Mark scheme – Energetics (F)

Question		ion	Answer/Indicative content	Marks	Guidance
				1 (AO 1.1)	Examiner's Comments
1			D		A and C were popular incorrect responses.
			Total	1	
2	а		Any two from: Change the glass beaker for a metal container \checkmark Move the spirit burner closer to the container / glass beaker / metal container \checkmark	2 (AO3.3b	2 IGNORE put all thermometer (bulb) in water xO3.3b x2)
			Use a draught shield √ Add a lid (to the beaker) √	×2)	
	b	i	Reaction mixtureStart temperature (°C)End temperature (°C)Temperature change (°C)X20.025.5(+) 5.5Y19.08.0-11Z20.020.00	1 (AO1.2)	
		ii	Y \checkmark the temperature went down / decreased / energy is taken in \checkmark	2 (AO3.2b 1.1)	
			Energy Energy change reactants Progress of reaction Activation energy \checkmark	3 (AO1.1)	ALLOW max 1 mark for correct shape if labels are missing / incorrect
			Energy change √ Reactants √		

3.2 Energetics (F)

			Total	8	
3	а	i	7.6√	1 (AO3.2b)	
		ii	error taking the temperature (at start or at end) \checkmark	1 (AO3.2a)	ALLOW used more/less metal / used more/less acid ALLOW reaction did not finish IGNORE faulty thermometer Examiner's Comments Most candidates explained what an anomalous result is rather than explain what might have caused the anomalous result.
		iii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 10.3 (°C) award 2 marks (10.3 + 10.5 + 10.2) ÷ 3 = 10.3333 (°C) √ = 10.3 (°C) (1 decimal place) √	2 (AO2.2)	Examiner's Comments Most candidates calculated the mean correctly but some truncated their answer rather than rounding it.
		i i	Improvement Any one from: Put a lid on the polystyrene cup / Put insulating material around the polystyrene cup / Use a digital thermometer √ Use a data logger √	2 (AO3.3b)	Reason must be linked to the Improvement to be awarded the second mark ALLOW add same amount of metal / acid/measure mass metal / measure volume acid so can compare results
	b		AND <u>Reason</u> Any one from: Stops/reduces heat loss (through evaporation) / Prevents/reduces heat loss (from the polystyrene cup) / (Digital thermometer) is easier to read / (Digital thermometer) gives more accurate/precise readings √ (data logger) gives continuous data so can get max T	(AO2.2)	ALLOW more metal / acid gives larger T change / errors are less significant Examiner's Comments Candidates found this very difficult. Repetition was the most common improvement with accuracy for the reason. Some thought glass to be a better insulator than polystyrene. Most able candidates discussed either heat loss or digital devices.
		ï	Any two from: Use different types of acids \checkmark Use a wider range of metals \checkmark Change the mass of metal used \checkmark Change the volume of acid used \checkmark	2 (AO3.3a)	ALLOW more reactive/less reactive metals IGNORE concentration Examiner's Comments Candidates found this difficult with a significant number omitting the question.

				Exemplar 7
				Energy Reactants Low M Low M Low M Low M Progress of the reaction
				The candidate has the product line in the correct place and labelled. Both energies are labelled and the arrows are in the correct places but the use of double headed arrows means that they cannot score. This response scores marking point 1 only.
d	i	Exothermic √	1 (AO1.1)	Examiner's Comments Exothermic was quite well known. Common incorrect responses included: endothermic, chemical, combustion, melting and redox
				ALLOW any correct multiple, including fractions ALLOW = / ⇔ instead of → NOT and / & instead of +
	ii	Mg + 2HCl → MgCl ₂ + H ₂ Formulae \checkmark Balancing \checkmark	2 (AO2.1) (AO2.2)	balancing mark is dependent on the correct formulae but ALLOW 1 mark (M2) for a balanced equation with a minor error in subscripts / formulae eg MG + 2 HCl \rightarrow MgCl ₂ + H ₂
				Examiner's Comments Candidates found this very difficult with few gaining marks. Most gave H or 2H as the formula for hydrogen.
				ALLOW correct formula AICl ₃
	iii	Aluminium chloride √	1 (AO2.2)	Candidates found naming the salt difficult and a significant number omitted the question. Common incorrect responses included: aluminium hydroxide, aluminium oxide, aluminium hydrochloride, salt, and magnesium chloride.

3.2 Energetics (F)

		Total				15	
4		Molten electrolyte	Formula	Product at negative electrode (cathode)	Product at positive electrode (anode)		DO NOT ALLOW bromide
		sodium chloride	NaC1	sodium (1)	chlorine	2	
		lead bromide	PbBr ₂	lead	bromine (1)		
		Total				2	
		(1 × 40.1) + [(16.0 + 1.0)) × 2]			
5		Correct use of Correc	of number of $A_r(1)$	of atoms (1)		2	
		Total				2	
6	а	large surface area to volume ratio (2))	2	ALLOW large surface area (1)
	b	Number of pa = 16 000 part	articles = 8 ticles (1)	0.0 mg ÷ (5.0) × 10 ⁻³ mg) (1) 2	
		Total				5	
7		В					
		Total					